Delphi и Windows API для защиты секретов

11. Чтобы проверить правильность подписи, получатель подписанного сообщения должен иметь файл с открытым ключом подписи отправителя. В процессе проверки подписи этот ключ импортируется внутрь криптопровайдера. Проверка выполняется функцией CryptVerifySignature (хеш, подпись, длина подписи, открытый ключ, комментарий, флаги). О последних двух аргументах можно сказать то же, что и о параметрах комментарий и флаги функции CryptSignHash, назначение же остальных должно быть понятно. Если подпись верна, функция возвращает true. Значение false в качестве результата может свидетельствовать либо о возникновении ошибки в процессе проверки, либо о том, что подпись оказалась неверной. В последнем случае функция GetLastError вернет ошибку NTE_BAD_SIGNATURE. Для примера приведем наиболее значимые фрагменты программы проверки подписи: См. Листинг Часть 3 Для конфиденциального обмена информацией с корреспондентом в любой точке земного шара приходится использовать целый арсенал современных криптографических инструментов: симметричные и асимметричные алгоритмы шифрования, механизмы генерирования криптографических ключей и случайных последовательностей, специфические режимы работы шифров и пр. Продолжая тему, начатую в первой и второй частях статьи, рассмотрим реализацию этих инструментов в CryptoAPI и воспользуемся ими для шифрования файла случайным ключом. Цифровые конверты clip0171 Асимметричные алгоритмы позволяют легко обменяться ключами шифрования по открытому каналу связи - но работают слишком медленно. Симметричные алгоритмы работают быстро - но для обмена ключами требуют наличия защищенного канала связи и, к тому же, нуждаются в частой смене ключей. Поэтому в современных криптосистемах используются сильные стороны обоих подходов. Так, для шифрования сообщения используется симметричный алгоритм со случайным ключом шифрования, действующим только в пределах одного сеанса,- сеансовым ключом. Чтобы впоследствии сообщение могло быть расшифровано, сеансовый ключ подвергается шифрованию асимметричным алгоритмом с использованием открытого ключа получателя сообщения. Зашифрованный таким образом сеансовый ключ сохраняется вместе с сообщением, образуя цифровой конверт. При необходимости цифровой конверт может содержать сеансовый ключ в нескольких экземплярах - зашифрованный открытыми ключами различных получателей (рис. 13). Создание сеансовых ключей CryptoAPI позволяет генерировать сеансовые ключи случайным образом - эту работу выполняет функция CryptGenKey, о которой шла речь ранее. Однако при использовании этой возможности за пределами США и Канады приходится учитывать американские ограничения на экспорт средств "сильной криптографии". В частности, до января 2000 года был запрещен экспорт программного обеспечения для шифрования с использованием ключей длиной более 40 бит. Этим объясняется разработка Microsoft двух версий своего криптопровайдера - базовой и расширенной. Базовая версия предназначалась на экспорт и поддерживала симметричные ключи длиной 40 бит; расширенная же версия (Microsoft Enhanced Cryptographic Provider) работала с "полной" длиной ключа (128 бит). Поскольку алгоритм шифрования, как правило, требует использования ключа строго определенной длины, недостающее количество битв в урезанном "экспортном" ключе могло быть заполнено либо нулями, либо случайными данными, которые предлагалось передавать открыто. В криптографической практике внесение в состав ключа определенной части несекретных данных, которые сменяются несколько раз в ходе обработки исходного или шифр-текста, используется для того, чтобы воспрепятствовать взлому шифра атакой "по словарю". В английской терминологии такие вставки называются salt values: их назначение - "подсолить" ключ (с учетом нашей ментальности можно перевести как "насолить" противнику). Поскольку этот термин используется и в CryptoAPI, будем употреблять его в транслитерированном виде - солт-значения. Итак, CryptoAPI, в экспортном исполнении практически вынуждает нас использовать солт-значения, составляющие бОльшую часть ключа - 88 бит из 128-ми для симметричных алгоритмов в RC2; и RC4. Конечно, при такой эффективной длине ключа криптозащита не может считаться достаточно надежной. В реальной ситуации выход один - воспользоваться криптопровайдером, не ограничивающим длину ключа. Обладатели Windows XP могут прибегнуть к услугам расширенных версий провайдера Microsoft (Enhanced или Strong). Пользователям более старых версий Windows, по-видимому, придется воспользоваться продуктами сторонних разработчиков. Например, свои версии криптопровайдеров предлагают российская компания "Крипто-Про" и шведская "StreamSec". В Украине, насколько известно авторам, разработкой национального провайдера криптографических услуг занимается коллектив харьковских ученых под руководством профессора Горбенко, однако до широкого внедрения дело пока не дошло. Тем не менее, благодаря архитектуре CryptoAPI, прикладные программы могут разрабатываться и отлаживаться и с базовым провайдером Microsoft - так как интерфейс взаимодействия остается неизменным. Поэтому вернемся к обсуждению создания случайных сеансовых ключей. Солт может быть сгенерирован вместе с ключом: для этого нужно в качестве флага передать функции CryptGenKey (или CryptDeriveKey) константу CRYPT_CREATE_SALT. Правда, при сохранении ключа (с помощью функции CryptExportKey) система уже не заботится о солт-значении, перекладывая ответственность на прикладную программу. Таким образом, корректная процедура создания и сохранения симметричного ключа предполагает: 1. при создании ключа функции CryptGenKey передается значение флага CRYPT_EXPORTABLE or CRYPT_CREATE_SALT; 2. с помощью функции CryptGetKeyParam с параметром KP_SALT сгенерированное солт-значение сохраняется в буфере; 3. ключ в зашифрованном виде сохраняется в буфере при помощи функции CryptExportKey, которой передается открытый ключ обмена ключами адресата; 4. зашифрованные ключевые данные сохраняются или передаются адресату вместе с экспортированным на втором шаге солт-значением. С другой стороны, солт-значение может быть сгенерировано и отдельно от ключа. Для этого используется функция CryptGenRandom (провайдер, длина, буфер). Здесь параметр длина задает размер генерируемой случайной последовательности в байтах, а последний аргумент задает адрес буфера, в который будет записан результат. Полученное таким образом солт-значение может быть внесено в ключ с помощью функции CryptSetKeyParam (ключ, параметр, данные, флаги). Ей вторым аргументом нужно передать KP_SALT, а третьим - адрес буфера, содержащего сгенерированную последовательность. (Последний аргумент функции зарезервирован на будущее и должен быть равен нулю.) Блочные шифры Блочные шифры считаются более надежными, нежели поточные, поскольку каждый блок текста подвергается сложным преобразованиям. Тем не менее, одних только этих преобразований оказывается

Отправить комментарий

Проверка
Антиспам проверка
Image CAPTCHA
...